

□ Practical use of magnesium and its alloys in hydrogen storage systems is limited by slow kinetics and elevated temperatures (>300°C) of H_2 absorption-desorption. A lot of recent studies were devoted to the enhancement of these parameters, including preparation of magnesium by reactive ball milling in hydrogen medium (RBM) and modification by different additions, e.g. oxides, intermetallic compounds (IMC), graphite etc [1].

Preparation of nanocrystalline powders of $Dy_{0.5}Nd_{0.5}FeO_3$ a low-temperature sol-gel citrate method was used. Rare earth oxide Dy₂O₃, as well as $Nd(NO_3)_2 \cdot 6H_2O$ and $Fe(NO_3)_2 \cdot 9H_2O$ were used as an initial reagents. Neodymium and iron nitrates were dissolved in distilled water, whereas nitrate solutions of Dy prepared by dissolving of oxide in HNO₃. Appropriate amounts of corresponding solutions were mixed on magnetic stirring for 30 min, after that water solution of citric acid (CA) and ethyleneglycol (EG) were sequentially added to the reaction mixture under continuous stirring. The foamy product obtained was finally calcined at 1273 K for 2 h. In such a way single phase nanocrystalline powders of $Dy_{0.5}Nd_{0.5}FeO_3$ were obtained with average grain size of 86 nm [4].

□ X-ray powder diffraction examination revealed that $Dy_{0.5}Nd_{0.5}FeO_3$ sample synthesized by solid state method adopt orthorhombic perovskite structure isotypic with GdFeO_3 (space group Pbnm).

REFERENCES

[1] H. Imamura and N. Sakasai, "Hydriding characteristics of Mg-based composites prepared using a ball mill" Int. J. Hydrogen Energy, (1995) 231, 810–814. [2] VV. Berezovets, R.V. Deny, NU. Zavaliy, V. Paul-Boncour, "Magnesium composites with additions of oxygen-stabilized n_2r4Fe200.5 for effective hydrogen accumulation" Powder Metall. Met. Ceram., (2014) 53, 335–342. [3]. Yu. Zavalli, V. Berezovets', and R. V. Denys, "Nanocomposites based on magnesium for hydrogen storage: Achievements and prospects [a survey]" Materials Science, (2019) 54, 611–626. [4] O. Pavlovska, I. Litzyuk, A. Kondyr, Ya. Zhydachevskyy, Ya. Vakhula, A. Pieniazek, J. Vaselechto, "Swthesia and structure characterisation of micro-and

[4] O. Pavlovska, I. Lutsyuk, A. Kondyr, Ya. Zhydachevskyy, Ya. Vakhula, A. Pieniaze L. Vasylechko, "Synthesis and structure characterisation of micro-and nanocrystalline powders of Dy_{2.4} R₂FeO₃ (R = La, Pr, Nd, Sm, Gd)" Acta Physica Polonica A. (2018) 133, 802–805. □ In our previous work we have studied the properties of Mg-based composite materials with two different types of oxides and suboxides: TiO_2 [2], $Ti_4Fe(Ni)_2O_x$ and Zr_3NiO_x [3]. Substantially improvement of hydrogen absorption-desorption properties was demonstrated for the Mg-Ti(Zr)_4Fe_2O_x composites prepared by RBM.

□ Preparation of magnesium hydride composite by reactive ball milling in hydrogen medium (RBM) (2 MPa H₂ pressure) and modification by additions 5 wt.% nanocrystalline powders of Dy_{0.5}Nd_{0.5}FeO₃.

Dependences of the amount of absorbed hydrogen on the time of reactive milling

 \Box The aim of this work was to study the hydrogen absorption-desorption properties of Mg-based composite materials with the Dy_{0.5}Nd_{0.5}FeO₃ oxide as nanoadditive.

Materials: Mg (99.8 %; ~0.5 mm); intermetallic

alloys (arc-melted, annealed); rare earth oxides R_2O_3 , $Fe(NO_3)_2x9H_2O$. **Reactive ball milling** Fritsch 6 Pulverisette mill. milling conditions: P_{H2} =20 bar; 500 rpm; BPR = 60:1 **Phase analysis**: powder XRD (Cu-K α), FULLPROF software.

<u>Thermal desorption spectroscopy (TDS)</u>: linear heating (2 °C/min.) in a dynamic vacuum from room temperature up to 350-400 °C

□ XRD demonstarted that mechanochemical hydrogenation results in complete transformation of Mg into two modifications of MgH₂. Analysis of hydride profile parameters indicates that the size of crystallites is <10 nm.

 \Box The first cycle of thermal desorption composite 95wt.% Mg+5wt.% Dy_{0.5}Nd_{0.5}FeO_3 is one-stage, maximum hydrogen evolution at 315° C.

 \Box At temperatures above 200 ° C, the absorption rate of hydrogen for composite is high - complete saturation with hydrogen (6.5-6.8 wt.% H) occurs within 1 min.

□ After re-hydrogenation of the composites, the desorption peak position for the 95wt.% Mg+5wt.% $Dy_{0.5}Nd_{0.5}FeO_3$ composite does not change, with hydrogen peaking being split.

 \Box The calculated desorption activation energy of hydrogen is 147 kJ / molH₂.

SUMMARY

 \Box Grinding of magnesium composites has revealed the merits of mechanochemical hydrogenation: first, magnesium hydrogenation rate is higher than that with other methods; second, no activation is required; third, 100% Mg ->MgH₂ transformation is reached; and fourth, nanocrystalline material with particles smaller than 0.5 µm is formed.

□ The difference between the desorption activation energies for pure magnesium hydride and the nano-particles composite (TiO₂) is about ~ 200 kJ / mol H₂. However, the $Dy_{0.5}Nd_{0.5}FeO_3$ nanopowders with perovskite structure did not show the expected improvement.